Problem¶
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive sizecapacity
.int get(int key)
Return the value of thekey
if the key exists, otherwise return-1
.void put(int key, int value)
Update the value of thekey
if thekey
exists. Otherwise, add thekey-value
pair to the cache. If the number of keys exceeds thecapacity
from this operation, evict the least recently used key.
The functions get
and put
must each run in O(1)
average time complexity.
Constraints:
1 <= capacity <= 3000
0 <= key <= 104
0 <= value <= 105
- At most
2 * 105
calls will be made toget
andput
.
Example 1:
**Input**
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4|2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
**Output**
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Solve¶
Using build-in¶
Using built-in class OrderedDict
of python
from collections import OrderedDict
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = OrderedDict()
def get(self, key: int) -> int:
if key in self.cache:
self.cache.move_to_end(key)
return self.cache[key]
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.cache.move_to_end(key)
else:
if len(self.cache) >= self.capacity:
self.cache.popitem(last=False)
self.cache[key] = value
Reimplementation - Double Linked list¶
This is a hard task, and require a lot of knowledge from a person. Here is a double linked list version where
- Adding a node is pushing it in to end of the linked list, which cost O(1).
- Popping a node will need
class Node: def __init__(self, key, value): self.key = key self.value = value self.prev = None self.next = None class LRUCache: def __init__(self, capacity: int): self.capacity = capacity self.count = 0 self.head = None self.tail = None self.hashmap = {} def delete_node(self, node): if node.prev: node.prev.next = node.next else: self.head = node.next if node.next: node.next.prev = node.prev else: self.tail = node.prev def add_to_front(self, node): node.next = self.head node.prev = None if self.head: self.head.prev = node self.head = node if not self.tail: self.tail = node def update_lru_cache(self, key, value): node = self.hashmap[key] if node: node.value = value self.delete_node(node) self.add_to_front(node) def get(self, key: int) -> int: node = self.hashmap.get(key) if node: self.delete_node(node) self.add_to_front(node) return node.value else: return -1 def put(self, key: int, value: int) -> None: if key in self.hashmap: self.update_lru_cache(key, value) else: if self.count == self.capacity: self.hashmap.pop(self.tail.key) self.delete_node(self.tail) self.count -= 1 new_node = Node(key, value) self.hashmap[key] = new_node self.add_to_front(new_node) self.count += 1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_LOOKUP_SIZE (unsigned long)1e4
typedef struct cache_node {
int key;
int val;
struct cache_node* next;
struct cache_node* prev;
} cache_node;
typedef struct {
cache_node* cache;
cache_node head;
int capacity;
int size;
cache_node* lookup[MAX_LOOKUP_SIZE];
} LRUCache;
// Function to create a new cache node
cache_node* createNode(int key, int value) {
cache_node* newNode = (cache_node*)malloc(sizeof(cache_node));
newNode->key = key;
newNode->val = value;
newNode->next = NULL;
newNode->prev = NULL;
return newNode;
}
// Function to insert a node at the tail of the doubly linked list
void insertAtTail(cache_node* head, cache_node* node) {
cache_node* tail = head->prev;
node->next = tail->next;
node->prev = tail;
tail->next = node;
node->next->prev = node;
}
// Function to remove a node from the doubly linked list
void removeNode(cache_node* node) {
node->next->prev = node->prev;
node->prev->next = node->next;
}
// Function to move a node to the tail of the doubly linked list (mark as least recently used)
void makeLRU(cache_node* head, cache_node* node) {
removeNode(node);
insertAtTail(head, node);
}
LRUCache* lRUCacheCreate(int capacity) {
LRUCache* lru = (LRUCache*)malloc(sizeof(LRUCache));
memset(lru->lookup, 0, sizeof(lru->lookup));
lru->cache = (cache_node*)malloc(sizeof(cache_node) * capacity);
lru->size = 0;
lru->capacity = capacity;
lru->head.next = lru->head.prev = &lru->head;
return lru;
}
int lRUCacheGet(LRUCache* obj, int key) {
cache_node* found = obj->lookup[key];
if (!found) {
return -1;
}
makeLRU(&obj->head, found);
return found->val;
}
void lRUCachePut(LRUCache* obj, int key, int value) {
cache_node* found = obj->lookup[key];
if (found) {
found->val = value;
makeLRU(&obj->head, found);
return;
}
cache_node* head = obj->head.next;
cache_node* tmp;
/* Evict case */
if (obj->capacity == obj->size) {
obj->lookup[head->key] = NULL;
removeNode(head);
tmp = head;
} else {
tmp = &obj->cache[obj->size++];
}
tmp->key = key;
tmp->val = value;
obj->lookup[key] = tmp;
insertAtTail(&obj->head, tmp);
}
void lRUCacheFree(LRUCache* obj) {
free(obj->cache);
free(obj);
}
For compiler file and testing, you want to add main function
int main() {
LRUCache* cache = lRUCacheCreate(2);
lRUCachePut(cache, 1, 1);
lRUCachePut(cache, 2, 2);
printf("%d\n", lRUCacheGet(cache, 1)); // Output: 1
lRUCachePut(cache, 3, 3);
printf("%d\n", lRUCacheGet(cache, 2)); // Output: -1
lRUCachePut(cache, 4, 4);
printf("%d\n", lRUCacheGet(cache, 1)); // Output: -1
printf("%d\n", lRUCacheGet(cache, 3)); // Output: 3
printf("%d\n", lRUCacheGet(cache, 4)); // Output: 4
lRUCacheFree(cache);
return 0;
}
Last update :
October 13, 2023
Created : August 16, 2023
Created : August 16, 2023